Nonlinear Schrodinger equation and frequency saturation
نویسنده
چکیده
We propose an approach that permits to avoid instability phenomena for the nonlinear Schrödinger equations. We show that by approximating the solution in a suitable way, relying on a frequency cut-off, global well-posedness is obtained in any Sobolev space with nonnegative regularity. The error between the exact solution and its approximation can be measured according to the regularity of the exact solution, with different accuracy according to the cases considered.
منابع مشابه
Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کاملWave group dynamics in weakly nonlinear long-wave models
Wave group dynamics is studied in the framework of the extended Korteweg-de Vries equation. The nonlinear Schrodinger equation is derived for weakly nonlinear wave packets, and the condition for modulational instability is obtained. It is shown that wave packets are unstable only for a positive sign of the coe cient of the cubic nonlinear term in the extended Korteweg-de Vries equation, and for...
متن کاملOn the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative
The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...
متن کاملThe smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کاملSOLVING FRACTIONAL NONLINEAR SCHR"{O}DINGER EQUATIONS BY FRACTIONAL COMPLEX TRANSFORM METHOD
In this paper, we apply fractional complex transform to convert the fractional nonlinear Schr"{o}dinger equations to the nonlinear Schr"{o}dinger equations.
متن کامل